Método por determinantes:
Un determinante está constituido
por columnas y renglones. Cuando un determinante tiene el mismo número de
renglones que de columnas , decimos que es un determinante cuadrado y si un
arreglo de este tipo tiene dos renglones y dos columnas, decimos que es de
segundo orden.
![](file:///C:\Users\Nao\AppData\Local\Temp\msohtmlclip1\01\clip_image001.png)
![](file:///C:\Users\Nao\AppData\Local\Temp\msohtmlclip1\01\clip_image002.png)
4x - 3y = 15
Para armar el determinante escribimos sólo los coeficientes en este caso sería:
2........1
4.......-3
4.......-3
![](file:///C:\Users\Nao\AppData\Local\Temp\msohtmlclip1\01\clip_image002.png)
![](file:///C:\Users\Nao\AppData\Local\Temp\msohtmlclip1\01\clip_image002.png)
2. (-3) - 4.1 = -10
Ahora para hallar X en el lugar de las X escribo el término independiente:
En este caso:
5...........1
15.......-3
________ = (5.(-3) - 15. 1)/(-10) = -30/-10 = 3
-10
por lo tanto X = 3
Para hallar Y hacemos lo siguiente
2.........5
4........15
__________ = (2.15 - 4.5)/(-10) = 10/(-10) = -1
-10
y = -1
No hay comentarios:
Publicar un comentario